M1.	(a)	(i)	M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / product	
				1
		M2	Is formed from its (constituent) <u>elements</u>	1
		М3	With all reactants and products / all substances in standard states <i>OR</i>	
			All reactants and products / all substances in normal states under standard conditions / 100 kPa / 1 bar and specified T / 298 K	
			Ignore reference to 1 atmosphere	1
	(ii)	By d	efinition	
		Beca	ause they are elements	1
	(iii)	M1	$\Delta H_r = \Sigma \Delta H_r$ (products) – $\Sigma \Delta H_r$ (reactants)	1
		M2	= –1669 – 3(–558) (This also scores M1)	1
		МЗ	 = (+) 5 (kJ mol⁻¹) Correct answer gains full marks. Assume the value is positive unless specifically stated as negative. Credit 1 mark if – 5 (kJ mol⁻¹). For other incorrect or incomplete answers, proceed as follows: check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2) If no AE, check for a correct method; this requires either a correct cycle with 3BaO OR a clear statement of M1 which could be in words and scores <u>only M1</u> 	1

- (b) (i) One from
 - <u>Aluminium is expensive</u> (to extract OR due to electrolysis)

- High energy cost
- The <u>cost of heating strongly</u>
 This requires a clear statement about <u>cost</u>

(ii) One from

- increase collision frequency
- OR more collisions
- OR <u>more chance of colliding</u>
 The answer MUST refer to <u>more collisions</u>.
 Ignore "more available to collide"

1

1

1

1

1

1

1

- (c) (i) $Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2$ Ignore state symbols Allow multiples and correct ionic equations
 - (ii) M1 $Ba^{2*} + SO_4^{2-} \rightarrow BaSO_4$ (or the ions together) Allow crossed out Na⁺ ions, but penalise if not crossed out
 - M2 <u>White precipitate</u> / <u>white solid</u> Ignore state symbols Ignore "milky"
 - (iii) **M1** Barium meal or (internal) X-ray or to block X-rays
 - M2 <u>BaSO₄ / barium sulfate is insoluble</u> (and therefore not toxic) Accept a correct reference to M1 written in the explanation in M2, unless contradictory.
 For M2 NOT barium ions NOT barium NOT barium meal and NOT "It".
 Ignore radio-tracing.

[14]

M2.		(a)	The enthalpy change when 1 mol of a compound	1			
	is completely burnt in oxygen						
		und	er standard conditions, or 298K and 100kPA	1			
	(b)	(i)	$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O_2$	1			
		(ii)	$\Delta H = 2 \times \Delta H_{f}^{\circ} (CO_{2}) + 3 \times \Delta H_{f}^{\circ} (H_{2}O) - \Delta H_{f}^{\circ} (C_{2}H_{6})$	1			
			= - 788 - 858 - (-85)	1			
			= – 1561 kJ mol⁻¹	1			

(c) moles methane =
$$\frac{0.10}{16}$$
 = 6.25 × 10⁻³
kJ evolved = 6.25 × 10⁻³ × 890 = 5.56
5.56 × 10³ joules = (mc) ΔT
1

$$\Delta T = \frac{5.56 \times 10^3}{120} = 46.4 \text{ K}$$

[11]

M3. (a) enthalpy change/ heat energy change when 1 mol of a substance

1

1

	is completely burned in oxygen	1
	at 298K and 100 kPa or standard conditions (not 1atm)	1
(b)	$\Delta H = \sum$ bonds broken – \sum bonds formed	1
	= (6 × 412) + 612 + 348 + (4.5 × 496) – ((6 × 743) + (6 × 463))	1
	= – 1572 kJ mol⁻¹	1
(c)	by definition $\Delta H_{\rm f}$ is formation from an element	1
(d)	$\Delta H_c = \sum \Delta H_t$ products - $\sum \Delta H_t$ reactants or cycle	1

$$= (3 \times -394) + (3 \times -242) - (+20)$$

M4.(a) Enthalpy change when 1 mol of compound (1)Is formed from it's elements (1)All substances in their standard state (1)

3

(b)
$$\Delta H = \Sigma \Delta H^{\circ}_{c} (reactants) - \Sigma \Delta H^{\circ}_{c} (products)$$
 (1)
= $(7x - 394) + (4x - 286) - (-3909)$ (1)
= $+ 7 \text{ kJmol}^{-1}$ (1)

3

4

(c) Heat change = m c
$$\Delta T$$
 (1)
= 250 × 4.18 × 60 = 62700J = 62.7kJ (1)
Moles C₇H₈ = 2.5 /92 = 0.0272 (1)
 ΔH = 62.7 / 0.0272 = - 2307 kJ mol⁻¹ (1)
(allow -2300 to -2323)

(d) Mass of water heated = 25 + 50 = 75gTemp rise = $26.5 - 18 = 8.5 \,^{\circ}C$ *both for (1) mark* Heat change = $75 \times 4.18 \times 8.5 = 2665 \,\text{J} = 2.665 \,\text{kJ}$ (1) Moles HCl = 0.05 (1) $\Delta H = -2.665 / 0.05 = -53.3 \,\text{kJmol}^{-1}$ (1) *(allow -53 to -54)* 4 (e) Less heat loss (1) 1